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Abstract

This work tries to define, analyse and quantify the elastic and plastic anisotropy that develops after some defor-

mation history involving finite (plastic) strains in a two dimensional cellular material. The internal variable framework

for the description of elasto-plastic material behaviour in the presence of anisotropy is briefly reviewed; the multipli-

cative decomposition of the deformation gradient into elastic and plastic parts is utilised, which is viewed here as an

inevitable consequence of the assumption of the existence of a range of elastic material response. It is shown that the

stress thermodynamically conjugate to what is commonly called the plastic velocity gradient is symmetric, as a result of

describing the elastic behaviour with – possibly evolving – structure tensors as additional arguments in the free energy

function. Some existing formulations of anisotropic plasticity are compared, discussing in particular the formulations of

the normality rule and the assumptions regarding the elastic behaviour. The main part of the article is devoted to the

presentation of the simulated response, obtained by numerical homogenisation, of a two dimensional cellular model

material to selected straining paths. Specifically, the evolving elastic and plastic anisotropies are characterised in terms

of computed yield surfaces and surfaces of constant strain energy in stress space. It is found that the elastic and plastic

anisotropies are closely related and do not differ significantly from an orthotropic symmetry whose axes coincide with

the principal plastic stretch directions, even for strongly non-proportional loading paths.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Advances in manufacturing technology during the past years have made metal foams available for

industrial applications that exploit their specific mechanical, thermal and/or acoustic properties. Potential

applications include, among others, energy absorbing components, sandwich structures and heat exchangers

(Gibson and Ashby, 1998) and the successful utilisation of this type of material requires a thorough

understanding of its mechanical properties. Due to their cellular microstructure, metal foams are capable of

undergoing very large – usually compressive – strains. Because of the ductile behaviour of the cell wall
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material, these large strains are accompanied by large irreversible changes in the geometry of the micro-

structure which, in turn, leads to significant changes in the (macroscopic) mechanical properties. In par-

ticular, an anisotropy in both elastic and plastic properties must be expected to evolve. This phenomenon

was illustrated in Deshpande and Fleck (1999) where the uniaxial yield strength perpendicular to the
direction of a prior uniaxial compression was determined experimentally and was found to be nearly twice

that of the compressive direction. Other experiments show that the Young’s modulus, measured by

unloading a compressive specimen, is reduced to about half its initial value after 10% uniaxial logarithmic

compressive strain (Bastawros et al., 2000). This type of behaviour is obviously not restricted to cellular

materials: Fully dense, polycrystalline metals, e.g., develop a macroscopic anisotropy as a result chiefly of

texture formation when they are ‘heavily’ deformed (Kocks et al., 1998). Usually, however, the changes in

the elastic properties are relatively small and the texture evolution becomes important only for very large

strains. In contrast, a high porosity of a material makes morphological changes of the microstructure easier
and the effect of anisotropy evolution is much more pronounced. Another example in this context is the cold

compaction of powders. Beginning from a dense random packed aggregate of the powder, the contact areas

between individual particles grow and are created in response to a macroscopic stress. A non-hydrostatic

macroscopic stress will induce an anisotropic distribution of these contact areas; at later stages of the

process, when the material can be viewed as a solid containing voids, the shape of the voids will be non-

spherical, again resulting in a macroscopic anisotropy (cf. Akisanya et al., 1985; Rottmann et al., 2001).

Even though the essentials of a theory for elasto-plastic material behaviour date back some decades (Hill,

1978; Mandel, 1974; Rice, 1971) there is an ongoing discussion about several aspects of fundamental nature.
These relate to the identification of elastic and plastic strains and their rates, the appropriateness of certain

invariance requirements, the role of whatever is meant by the term ‘plastic spin’ and also to the formulation

of the normality law. The points of disagreement become particularly apparent when large elastic strains

and/or anisotropy are considered. Some of the more recent publications in this context include (Miehe, 1998;

Hackl, 1997; Svendsen, 2001; Dafalias, 1998; Scheidler and Wright, 2001; Rubin, 1994; Bertram, 1998).

Apart from the more fundamental differences, there is a multitude of specific yield criteria and hardening

rules proposed in the literature that can hardly be overlooked. We mention the works of Papadopoulos and

Lu (2001), Tsakmakis (2004), Bruhns et al. (1999), Reese (2003), Eidel and Gruttmann (2003), Menzel and
Steinmann (2003), Ekh and Runesson (2001) and Sidoroff and Dogui (2001).

Often, the differences between the many proposals regarding both fundamental aspects and details of a

specific model are hidden behind a large body of formulas and a comparison with other existing models is

routinely not made. Since the primary purpose of this work is to analyse the evolving anisotropy in metallic

foams, and since some concepts for its description are not generally agreed upon, it is necessary to spend some

words on the aforementioned general aspects of the theory. In the course of doing so, some of the above

mentioned models will be discussed; this is done in Section 2. Some definitions related to the homogenisation

procedure are recalled in Section 3, followed by the presentation of the numerical results in Section 4.

2. Constitutive framework for elasto-plasticity

2.1. Internal variable formalism

Following Rice (1971) 1 or Coleman and Gurtin (1967), an internal variable description of rate inde-

pendent inelastic material behaviour for an isothermal process is represented by constitutive relations for

the Helmholtz free energy density w, per unit reference volume, and the Piola–Kirchhoff stress P in the form
1 Rice’s analysis is based on the consideration of representative volume element of the material and the ‘internal variables’ are not

macroscopically defined quantities as in (1) but their rates are meant to represent microstructural changes at various sites in that

representative volume.
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w ¼ w1ðF;~nÞ;
P ¼ PðF;~nÞ;

ð1Þ
in which ~n denotes a set of n internal variables na, a ¼ 1; . . . ; n, embodying the past history of the defor-

mation gradient F at the point of interest. The above relations need to be completed by the specification of

the evolution of the internal variables in the form
_na ¼ kg1aðF;~nÞ; ð2Þ

where the multiplier k is a positive homogeneous function of degree one in _F. With the definition of

thermodynamic conjugates to the n’s, the ‘forces’
~f ¼ �o~nw1ðF;~nÞ; ð3Þ
and the assumption that, at any instant, the stresses are determined through the usual potential relation
P ¼ oFw1ðF;~nÞ; ð4Þ

the dissipation rate density d, per unit reference volume, is given by
d � P � _F � _w1 ¼ ~f � ~n�: ð5Þ

The second law is then expressed in the form of the Clausius–Duhem inequality as d P 0, where the

underlying hypotheses is that the process can be treated as a sequence of constrained equilibrium states.

Material frame indifferent forms of the above constitutive relations, satisfying
w1ðQF;~nÞ ¼ w1ðF;~nÞ
PðQF;~nÞ ¼ QPðF;~nÞ

�
8Q : QT ¼ Q�1; ð6Þ
read, as usual,
w ¼ w2ðE;~nÞ;
S ¼ oEw2ðE;~nÞ;
_na ¼ kg2aðE;~nÞ

ð7Þ
in terms of rotation invariant, conjugate stress and strain measures, e.g. the Green–Lagrange strain
E ¼ 1

2
ðC � 1Þ; C ¼ FTF ð8Þ
and the symmetric Piola–Kirchhoff stress
S ¼ F�1P: ð9Þ

Finally, the yield function X of the material is introduced with XðSÞ6 0 specifying the domain, in stress

space, of elastic material response.

In the following, the focus will be on ‘associative’ inelasticity and different versions of what is called
‘normality rule’ will be juxtaposed. In particular, the notion of normality in the sense of Rice (1971) and

Hill and Rice (1973), as expressed through 2
ð _EÞp � _E � C�1 _S ¼ koSX; where C ¼ o2EEw2ðE;~nÞ; ð10Þ
(10) ð _EÞp is not the time derivative of any tensorial quantity; in particular, it is not, in general, the time derivative of a ‘plastic

, however defined: the statement is independent of whether or not there exists a permanent strain after unloading.
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and the so called standard dissipative medium flow rule, given by
n�! ¼ ko~fUð~f ;~nÞ ð11Þ
in terms of a flow potential U, will be considered. The statement (10), which holds for any work conjugate

pair of stress and strain measure, any choice of reference configuration and unrestricted deformations,

can be viewed as a consequence of assuming that the rate of each internal variable is governed by its

associated thermodynamic force, i.e. g2aðE;~nÞ ¼ haðfaðE;~nÞ;~nÞ. While this is expressed here in terms of

the macroscopic internal variables, it is emphasised that the underlying assumption in Rice (1971) leading

to (10) is less restrictive: Neither w nor ha needs to be a point function of the n’s, only the dissipation is

required to be expressible as in (5). On the other hand, the flow rule (11) can be seen as a consequence of

the assumption that (i) the yield function is stress state dependent only through the thermodynamic forces
~f , i.e.
XðSÞ ¼ Uð~f ðSÞ;~nÞ; ð12Þ
and that (ii) the evolution of the internal variables takes place such that for a given stress state the dissi-

pation (5) is maximised. This concept can be found, in different forms, in the works of Ziegler and Wehrli

(1987), Halphen and Nguyen (1975) and Hill (1948).

Relation (10) is, in principle, experimentally verifiable because all quantities appearing there are mea-

surable. Furthermore, it is implied by (11) which can therefore be excluded if (10) does not hold. Con-

versely, if (10) holds, then (11) represents a possible approach but the flow potential U appearing there is

not measurable when the dimension of ~f is larger than that of S.
2.2. Multiplicative split of the deformation gradient

Rather than beginning a further specification of the constitutive relations (1) and (2) with introducing the

multiplicative decomposition of the deformation gradient (14) we prefer the following line of thought: The

assumption that after some deformation history there always exists a range of elastic material response

means that we can always use the elasticity relation (4) to define
Fp ¼ argmin
F

½w1ðF;~nÞ
~n¼const: ) oFw1ðF;~nÞ
���
F¼Fp

¼ 0 ð13Þ
which, of course, identifies the stress free intermediate configuration. As a consequence of (6), the definition

(13) leaves unspecified the orthogonal part Rp, but uniquely determines the right stretch part Up, of the
polar decomposition Fp ¼ RpUp. If we decide to take the configuration F ¼ Fp with some arbitrarily

chosen Rp as the reference configuration then
Fe ¼ FF�1
p ¼ FU�1

p RT
p ð14Þ
is the deformation gradient based on that configuration. Suppose now that an experimentalist were given a

plastically deformed piece of material whose elastic properties are to be determined, and suppose further

that he or she is able to provide a functional relation
eP ¼ ePðFeÞ ð15Þ

for the Piola–Kirchhoff Stress eP, based on the intermediate configuration, that accurately describes the

elastic behaviour of the material. The free energy ~w, per unit volume of the intermediate configuration, of

the material is then necessarily of the form (cf. Rice, 1975)
~w ¼ ~w1eðFeÞ þ ~wp; ð16Þ
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where ~wp, an integration constant, is independent of Fe and ~we1 has the property
3 In

a differ
4 Th
5 Th
eP ¼ oFe
~w1eðFeÞ: ð17Þ
Material frame indifferent forms of (16) and (17) are given by
~w ¼ ~w2eðeE eÞ þ ~wp;eS ¼ oeE e

~w2eðeE eÞ;
ð18Þ
in terms of the Green–Lagrange strain
eE e ¼
1

2
ð eC e � 1Þ; eC e ¼ FT

e Fe ð19Þ
and the symmetric Piola–Kirchhoff stress
eS ¼ F�1
e
eP ð20Þ
both referring to the intermediate configuration. Without loss of generality we can choose ~w2eð0Þ ¼ 0 so

that ~w2e and ~wp represent, respectively, the recoverable strain energy and the free energy ‘locked’ in the

material after unloading, since eSðeE e ¼ 0Þ ¼ 0 by definition.

Now if (18) describes anisotropic elasticity, then the argument list in the strain energy function must

contain, apart from eE e, additional tensorial arguments, denoted by, say, fM i; i ¼ 1; 2; . . . ; such that ~w2e

becomes an isotropic function of its arguments, i.e. 3
~w2eðQ 
 eE e;Q 
 fM iÞ ¼ ~w2eðeE e;fM iÞ 8Q : QT ¼ Q�1; ð21Þ

or, equivalently, in terms of function ~w1e:
~w1eðFeQ
T;Q 
 fM iÞ ¼ ~w1eðFe;fM iÞ 8Q : QT ¼ Q�1: ð22Þ
Here, the notation Q 
 A is defined through
ðQ 
 AÞi1i2...in ¼ Qi1k1Qi2k2 . . .QinknAk1k2...kn ð23Þ
for a tensor A of nth order. Eq. (21) can be understood quite simply as the requirement that ~w2e be

independent of the choice of coordinate system with respect to which the components of eE e are written out.

Alternatively, it can be understood as the requirement that the strain energy be independent of the ori-
entation of the reference configuration: Had we chosen another reference configuration F


p, differing from

the first only through F

p ¼ QFp, (i.e. U



p ¼ Up) then the Green–Lagrange strain and the structure tensors

would be 4
eE 

e ¼ Q 
 eE e;fM 

i ¼ Q 
 fM i;

ð24Þ
and it is seen from (21) that such a change leaves the strain energy unaltered (the same holds for the free

energy (16) because the constant ~wp is trivially invariant). 5 With (14) we can now write
~w1e ¼ ~w1eðFF�1
p ;fM iÞ; ð25Þ
order to avoid the introduction of too many symbols, ~w2e has been used in both (18) and (21) although the functions there have

ent number of arguments.

is is a consequence of (19) and (14) and the fact that Q represents a rigid body rotation.

is point of view is also expressed in, e.g., Svendsen (2001), Dafalias (1998) and Lubarda and Krajcinovic (1995).
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where it is important to note that Fp and the fM i’s are not independent as expressed in (24)2. For this reason,

one cannot perform a partial differentiation with respect to Fp holding fM i fixed. Using (24) to define the

structure tensors in the unrotated configuration by
cM i ¼ RT
p 
 fM i; ð26Þ
and applying (22) with Q ¼ RT
p , (25) reads
~w1e ¼ ~w1eðFU�1
p ;cM iÞ: ð27Þ
Since the volumes in the reference and intermediate configuration differ by a factor Jp ¼ detUp, so that
w ¼ Jp~w, we are lead to the following form of the referential free energy density
w1ðF;~nÞ ¼ Jp~w1eðFU�1
p ;cM iÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

w1eðF;Up;bM iÞ

þ Jp~wpð~fÞ|fflfflfflffl{zfflfflfflffl}
wpðUp;~fÞ

¼ �w1ðF;Up;cM i;~fÞ ð28Þ
in which one identifies Up and the cM i’s as distinguished members of the vector ~n, the remaining part of

which is denoted by~f. It should be noted that, though (28) might suggest otherwise, wp does not necessarily

depend on Up explicitly, either through Jp or otherwise. Any such dependence, however, is either through

the invariants of Up or through additional structural tensors which also transform with (24).

To summarise: The single requirement that after any inelastic deformation history there exists an elastic
potential necessitates, without any further assumption that is not generally agreed upon,

(i) the additive structure of the free energy consisting of a ‘locked in’ free energy and a recoverable strain

energy part, whose form is entirely determined through the measurable elastic response and

(ii) the invariance of the free energy with respect to the orthogonal part of Fp.

The significance of (28) arises from the fact that, within this framework, the stresses are assumed to be

given by the potential relation (4) also for inelastic processes.

2.3. Flow rules

2.3.1. The general case

A crucial point in setting up the evolution equations for the internal variables is the identification of the

thermodynamically conjugate forces (3). For the above derived structure of the referential free energy,
without further specifying the functional form of wp, the dissipation (5) takes the form
d ¼ �ðoUp
w1eÞ � _Up � ðobM i

w1eÞ � ðcM iÞ� � _wp: ð29Þ
The first term in (29) can be rearranged as
�ðoUp
w1eÞ � _Up ¼ � oUp

ðJp~w1eÞUT
p

� 

� _UpU

�1
p

� 

¼ �JpbR � _UpU

�1
p

� 

; ð30Þ
where
bR ¼ ~w1e1� bC e
bS ð31Þ
is Eshelby’s energy momentum tensor based on the unrotated intermediate configuration with bC e and bS
given by (19)2 and (20) evaluated with Rp ¼ 1. The second term in (31) is known as (the negative of)

Mandel’s stress which would be the only term had we assumed either plastic incompressibility Jp � 1 or a
specific dependence of the structural tensors on Jp. The term (30) can also be expressed as (see Appendix A)
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�JpbR � _UpU
�1
p

� 

¼ bK � bDp; ð32Þ
where
bDp ¼ _UpU
�1
p

� 

sy
; ð33Þ
and the Cartesian components of the stress measure bK with respect to a coordinate system aligned with the

principal directions of Up are given by
bKij ¼ �Jp bRsy
ij

 
þ bRsk

ij

kp
i � kp

j

kp
i þ kp

j

!
ð34Þ
in which bRsy
ij and bRsk

ij denote, respectively, the corresponding components of the symmetric and skew

symmetric part of bR, and kp
i are the principal values of Up. With the notation
�obM i
w1e ¼ bG i ð35Þ
the dissipation is now expressed as
d ¼ bK � bDp þ bG i � ðcM iÞ� � _wp: ð36Þ
For a standard dissipative medium the evolution equations would be of the form
bDp ¼ kobKUðbK; bG iÞ;

ðcM iÞ� ¼ kobG i
UðbK; bG iÞ:

ð37Þ
Since the two thermodynamic ‘forces’ bK and bG i result from the deformation dependent part w1e of the free

energy via (34) and (35), their value will depend on the current stress state. The forces conjugate to all other

internal variables~f are, in contrast, independent of the current stress state, because wp does not depend on

F. It follows that the relation between the (measurable) yield surface in stress space X and the flow potential

U (cf. (12)) is of the form
XðSÞ ¼ UðbKðSÞ; bG iðSÞÞ; ð38Þ
where we have omitted the dependence of U on the forces conjugate to the f’s, which describe the hardening
of the material. It is important to note that while the function XðSÞ is, in principle, experimentally mea-

surable, UðbK; bG iÞ is not, because it is impossible to vary one of its arguments while keeping the other fixed:

The knowledge of the yield surface in stress space, however precise, contains no information about the flow

potential other than what is expressed in (38).

For the most general case in which the elastic properties are allowed to evolve arbitrarily, the normality

rule (10) can be rewritten in terms of quantities defined on the (unrotated) intermediate configuration as
bDp ¼ kobKXðbKÞ þ bRcAiðcM iÞ�: ð39Þ
The 4th order tensor R and the (2 +order-of-cM i)th order tensors cAi depend on the current stress state and

the plastic stretch and are given in Appendix B. Eq. (39) is the precise statement of ‘normality’ in the sense

of Hill and Rice in the context of the widely used multiplicative decomposition of F. In the large elastic

strain case, the knowledge of the measurable yield surface in stress space does not allow for the determi-

nation of direction of plastic flow, unless the evolution of the structure tensors is specified. It is emphasised

that the differentiation in (39) involves the yield surface X (in the space of the stress measure bK), in contrast
to (37)1 involving that of the flow potential U.
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Remark: The right hand side of Eq. (32) can be transformed yet further to give
6 W
bK � bDp ¼ ðRp 
 bKÞ � ðRp 
 bDpÞ ¼ eK � eDp; ð40Þ

and since
eDp ¼ Rp 
 bDp ¼ Rp 
 _UpU

�1
p

� 

sy
¼ _FpF

�1
p

� 

sy
; ð41Þ
(40) identifies the symmetric tensor eK ¼ Rp 
 bK as the work conjugate to what is commonly called the

‘plastic velocity gradient’.

It is a simple matter to rewrite (37) in terms of quantities defined in the rotated intermediate configu-
ration. Using (26) and (41) and the convention ~ðÞ ¼ Rp 
 ð̂Þ the result is 6
eDp ¼ koeKUðeK; eG iÞ;

ðfM iÞ� � ðfM iÞ� � eXp
fM i � fM i

eXT
p ¼ koeG i

UðeK; eG iÞ;
ð42Þ
where the spin eXp ¼ _RpR
T
p can be prescribed arbitrarily.

2.3.2. Unchanged elastic properties

In metal plasticity, it is typically observed that ‘the elastic properties’ of the material are unaffected by

plastic deformation. In particular, this is so for elastically isotropic polycrystals when texture effects are

negligible and for anisotropic single crystals deforming by crystallographic slip. The meaning of this

statement is that if
P ¼ hðFÞ ð43Þ

was the elasticity relation before the occurrence of plastic deformation, then
eP ¼ hðFeÞ ð44Þ

with the same function h and some properly chosen Rp is the elasticity relation after a plastic deformation
Up. This identifies the so called isoclinic intermediate configuration which is characterised by the fact that

the structure tensors fM i in this configuration remain constant throughout the deformation:
ðfM iÞ� ¼ 0: ð45Þ

It is only in this case that we can attach a constitutive meaning to the orthogonal part of Fp: because of (45),

the fM i in (25) are constant parameters and the referential free energy takes the form
w1ðF;~nÞ ¼ Jp
~~w1eðFF�1

p Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
w1eðF;FpÞ

þ Jp
~~wpð~fÞ|fflfflfflffl{zfflfflfflffl}

wpðFp;~fÞ

¼ ��w1ðF;Fp;~fÞ: ð46Þ
By definition, function ��w1ðF;Fp;~fÞ in (46) is not invariant with respect to the orthogonal part of Fp, and it

does not make sense to require such an invariance.

The same calculation that lead to (36) now gives
d ¼ �JpeR � eLp � _wp; ð47Þ
identifying the (non-symmetric) Eshelby stress as the work conjugate to the ‘plastic velocity gradient’
eLp ¼ _FpF
�1
p ¼ Rp 
 _UpU

�1
p

� 

þ _RpR

T
p : ð48Þ
ritten out here for the case that the fM i’s are 2nd order tensors. More generally one has ðfM iÞ� � Rp 
 RT
p 
 fM i

h i�
.
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With the above identification, the ‘flow rule’ for a standard dissipative medium would now be of the form
eLp ¼ ko
ð�JpeRÞ

Uð�JpeRÞ ð49Þ
which is, although seemingly different, just a special case of (37): The evolution equations (37)2 for the

structural tensors cM i have been replaced here by one for the orientation Rp which is hidden in the skew

symmetric part of (49). It is important to realise that, as in (37), the differentiation in (49) involves the flow

potential U which, although in this case depending on only one single tensorial stress measure, must not be

confused with the measurable yield surface in stress space X. The relation between the two is, as before,
XðSÞ ¼ Uð�JpeRðSÞÞ ð50Þ

and the Hill and Rice statement of ‘normality’ reads
bDp ¼ kobKXðbKÞ � bRcAið bXp

cM i þ cM i
bXT

p Þ with bXp ¼ RT
p
_Rp: ð51Þ
2.3.3. Isotropic elasticity

For completeness, the case of unchanged isotropic elastic properties (in the intermediate configuration) is

recorded here. Due to the coaxiality of eC e and eS , the Eshelby stress is symmetric in this case, ~R ¼ eRT, and

is, up to a scalar factor, identical to the previously introduced stress measure bK (cf. (34)):
bK ¼ �JpeR: ð52Þ

The dissipation consequently reads
d ¼ bK � bDp � _wp ð53Þ
and the standard dissipative medium flow rule becomes
eDp ¼ koeKUðeKÞ: ð54Þ
Since now eK is the only stress dependent thermodynamic force, the relation between U and X is
XðSÞ ¼ UðbKðSÞÞ ð55Þ

which shows that flow potential and yield surface are in this case identical functions. The Hill and Rice
statement of normality becomes
bDp ¼ kobKXðbKÞ ð56Þ
and is seen to be equivalent to (54) – in contrast to the anisotropic case where (39) is only necessary for (37).

2.3.4. Small elastic strains

In practically important cases the elastic strains are small, i.e. jj~Eejj � 1, and it suffices to take function
~w2e in (21) as quadratic in its first argument:
~w2eðbE e; bCÞ ¼ 1

2
bE e � ðbC bE eÞ ð57Þ
so that the elasticity relation is simply
bS ¼ bC bE e: ð58Þ

Note that (58) implies the relation
S ¼ C0ðE � EpÞ ð59Þ
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in terms of referential quantities, where
C0 ¼ JpF
�1
p 
 bC: ð60Þ
Therefore, if bC is constant during an inelastic process, then C0 is not and vice versa. A similar statement

holds if an additive split of generalised Lagrangean strain measures is used as in Papadopoulos and Lu

(2001), Miehe et al. (2002) and L€oblein et al. (2003). In these formulations, the linear elastic stiffness in the

intermediate configuration does not remain constant (cf. Schmidt, in press).
The elastic stiffness tensor bC now plays the role of one of the structure tensors introduced previously

(there being only one of 4th order in this case). The conjugate ‘force’ is given by
bE � �obCðJp~w2eÞ ¼ �Jp
1

2
bE e � bE e: ð61Þ
The stress measure K̂ in (34) reduces to
bK � JpbS � �s; ð62Þ
the back rotated Kirchhoff stress, so that in this case the standard dissipative medium flow rules would be
bDp ¼ ko�sUð�s; bEÞ;bC� ¼ kobEUð�s; bEÞ:
ð63Þ
Regarding the Hill and Rice normality, the second term in (39) can be shown to be negligible, if the overall

change of bC is or, otherwise, if the plastic strain accompanying a significant change of bC is finite (i.e. large
compared to the elastic strain). Thus, with (62), (39) reduces to
bDp ¼ ko�sXð�sÞ; ð64Þ
and this is indistinguishable from (63)1. For future reference, the complementary elastic potential, per unit

reference volume, is introduced here as
ueð�sÞ ¼
1

2
�s � ððJp bCÞ�1�sÞ; ð65Þ
so that
bE e ¼ o�sueð�sÞ: ð66Þ
2.4. Comparison with other formulations

The formulation developed so far is similar to the work of Svendsen (2001) who also considered evolving

structure tensors as additional arguments in the free energy function. The quantity eK has also been

introduced there and has been calculated for a specific form of the strain energy function; the general
explicit formulas (34)/(A.5) appear to be new. Moreover, the case of associated evolution equations is not

considered in detail in Svendsens work and the different normality rules are not discussed.

The above formulation is also equivalent to that outlined in Miehe (1998) when his ‘plastic metric’ is

identified with Up, and a particular dependence of the free energy on that quantity is assumed a priori. The

relation to models working with a nine dimensional internal variable Fp, i.e. Rp 6¼ 1, and also to models

using an additive split of a Lagrangean strain measure is not discussed in detail. Also, we remark that the

split of the free energy into volumetric and isochoric contributions, proposed by Miehe (1998), is only

possible for the case of isotropy or orthotropy with cubic symmetry: For any other material symmetry, the
deviatoric stresses will depend on the volumetric strains and vice versa.



I. Schmidt / International Journal of Solids and Structures 41 (2004) 6759–6782 6769
Eq. (50) clearly shows the interrelation between the normal to the yield surface, the direction of plastic

flow and the spin bXp (for the special case of unchanged elastic properties). A different form of it, namely
7 Th

unders
8 Pl
9 M

contra
ð eC e
eLpÞsy þ 2 bC�1ðeLp

eSÞsy ¼ koeSXðeSÞ; ð67Þ
containing the same physical statement for the special case of plastic incompressibility, Jp � 1, has been

derived in Lubliner (1986) pointing out in particular the lacking equivalence to (49), which is questioned for

this reason. The viewpoint taken here is that there is a conceptual difference between functions X and U
which is not appreciated in Lubliner’s article. 7

Eq. (67), and therefore (51), is not equivalent to the normality rule proposed by Maugin (1994), which

reads
ð eC e
eLpÞsy ¼ koeSXðeSÞ: ð68Þ
It is motivated by the fact that the first term in (47) is also expressible as 8
�Jp~R � ~Lp ¼ ð bC e
bSÞ � eLp ¼ bS � ð bC e

eLpÞsy; ð69Þ
due to the symmetry of bS , and so identifies the latter as the ’force’ conjugate to the ‘flux’ ð bC e
eLpÞsy. The

reason for this discrepancy is that this flux is no time derivative of any quantity; it appears conceptually
flaw to maximise (69) by comparing its value for different bS at fixed ðĈ e

eLpÞsy because bC e and bS are

obviously not independent.

Lubarda and Krajcinovic (1995) give a detailed discussion of the constitutive framework for damage-

elasto-plasticity, i.e. plasticity accompanied by changing elastic properties. They particularly consider the

case specified by (57) (but without restricting the magnitude of kEek). Their approach is characterised by

introducing a further decomposition of the inelastic part ð _EÞp of the strain rate (cf. (10)) into damage and

plastic parts defined by ð _EÞd ¼ ðC�1
0 Þ�S and ð _EÞpl ¼ _Ep ¼ ð _UpUpÞsy respectively. The existence of two dif-

ferent potentials for the total inelastic and the damage part of the strain rate is then postulated such that 9
ð _EÞp / oSXðSÞ; ð _EÞd / oSWðSÞ: ð70Þ
In the associated case to be compared with the present approach, these potentials are identical to

inelastic yield and damage functions, with the surfaces X ¼ 0 and W ¼ 0 identifying the boundary of the

elastic domain and the onset of damage respectively. We remark that, since damage is clearly an inelastic

process, X cannot be greater than W. On the other hand, if damage occurs then both X and W must be zero

and since the two surfaces cannot intersect, they must share the same normal in stress space. This places
severe restrictions on the functional forms of these potentials which seem difficult to satisfy in a specific

model.
3. Homogenisation

The aim of the following sections is to determine, for a model material to be described shortly, the

evolution of the elastic stiffness and the shape of the yield function, as defined in (57) and (64), for selected

deformation histories. Specifically, the elastic and plastic anisotropies will be represented by iso-surfaces of
e recent article of Cleja-T� igoiu (2003) is also centred around the different normality statements but has not been fully

tood by the present author.

astic incompressibility is assumed here.

ore precisely, function W is assumed to depend on the stress through E � Ep, the referential counterpart of bE in (61), and, in

st to the yield function in the present article, function X is taken to depend also explicitly on the referential compliance C�1
0 .
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the yield function X and the strain energy u in the space of the back rotated Kirchhoff stress �s. These will be
computed by a ‘direct numerical homogenisation’ considering a representative elementary volume (RVE) of

a 2D cellular material. The details are briefly described next.

3.1. Macroscopic variables

Let Z denote the referential domain of the RVE, oZ its boundary with unit outward normal N , V its

volume, x the deformed position of a point originally located at X and t the traction vector. The macro-

scopic deformation gradient and Piola–Kirchhoff stress are defined as
F ¼ 1

V

Z
oZ

x�N dA; P ¼ 1

V

Z
oZ

t � X dA ð71Þ
and from these other stress and strain measures are computed in the usual way. A rectangular two

dimensional domain Z is considered and with ð Þ� identifying cell edges opposite to each other, periodic

boundary conditions on oZ are applied according to
xþ � x� ¼ FðXþ � X�Þ; tþ þ t� ¼ 0: ð72Þ
3.2. Microstructure

As a 2D cellular model material an irregular hexagonal honeycomb structure as shown in Fig. 2(a) is

considered. The structure is generated by randomly perturbing the vertex positions of a regular honeycomb

up to 50% of the average cell wall length. With their length being large compared to the thickness, the cell

walls are treated as slender beams. Moreover, one or two parabola-shaped wiggles are introduced in each

beam as another typical imperfection observed in real metallic foams. The positions of vertices belonging to

beams that cross the cell boundary are adjusted so as to produce a perfectly periodic structure without

kinked beams. In terms of the beams’ translational and rotational degrees of freedom u and / and their
conjugates f and m the periodic boundary conditions are
uþ � u� ¼ ruðXþ � X�Þ; f þ þ f � ¼ 0;

/þ � /� ¼ 0; mþ þm� ¼ 0
ð73Þ
with ru denoting the macroscopic displacement gradient. This allows to prescribe separately histories for

each single component of either the macrodisplacement gradient or the macro-Piola–Kirchhoff stress on a

Cartesian basis coinciding with the normals to the cell faces.

The cell wall material is taken to be elastic-ideally plastic with Young’s modulus E ¼ 5� 104 N/mm2 and

yield strain �y ¼ 0:2%. The ratio of thickness to average beam length is t=‘ ¼ 0:05 and the height of the

wiggles is up to 0:07‘. No hardening, neither isotropic nor kinematic, is assumed on the microlevel in order
to bring about the influence of the changing geometry of the microstructure. The RVE is approximately of

square shape with edge length �14 cells. The beams are discretised with up to seven linear Timoshenko

beam elements and the numerical computation has been performed using the commercial FEM code

ABAQUS/explicit.

3.3. Elastic and plastic properties

At selected points in a loading programme, the deformation process is interrupted and the linear re-
sponse at frozen inelastic variables to three independent macroscopic strains is used to compute the (ref-

erential) elastic stiffness via numerical differentiation:
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C ¼ oS

oE

����
Ep¼const:

: ð74Þ
From this, the current plastic stretch is computed as
Up ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C � 2C�1S

p
ð75Þ
and the stiffness in the unrotated intermediate configuration follows as
bC ¼ J�1
p Up 
 C: ð76Þ
Subsequently, the structure is unloaded to (approximately) zero macroscopic stress by prescribing a total

deformation equal to the above determined plastic stretch. If the elastic stiffness computed from (74) were

exact, this would obviously correspond to S ¼ 0 exactly. Hence, the deviation of S from zero after this

unloading is a measure for the quality of both the assumption of linear elastic response and the way to

compute C and Up.

To determine the yield surface, the RVE is then loaded in a prescribed stress space direction until the
deviation from linearity – as defined by the previously computed stiffness and plastic strain – is greater than

a certain offset. In particular,
kðE � EpÞ � C�1Sk > � ð77Þ
is taken to define yield, where � is typically chosen as 0:2%. Moreover, the plastic part of the strain rate, as

defined by the left hand side of (10), is evaluated for this particular loading direction. This procedure is

repeated for different stress space directions until the yield surface is sufficiently well resolved.

The elastic and plastic properties so determined are depicted as plane sections through the yield surface
and the surface of constant (complementary) strain energy in a three dimensional coordinate system with

axes p, d and z, where
p ¼ 1

2

ffiffiffi
2

p
ð�s22 þ �s11Þ; d ¼ 1

2

ffiffiffi
2

p
ð�s22 � �s11Þ; z ¼

ffiffiffi
2

p
�s12 ð78Þ
in terms of the components of the back rotated Kirchhoff stress in a Cartesian basis coinciding with the

normals to the cell faces. In this representation, an isotropic function of s is a surface of revolution around

the p-axis; in particular, an isotropic quadratic function is an ellipsoid of revolution. An orthotropic

function of s is less simple to recognise in the said plot; in order to quantify the deviation of the stiffness

moduli bC from orthotropy, a measure is introduced according to
�ort ¼ minbCort

kbC � bCortk
kbCk

ð79Þ
which is the normalised distance from the ‘closest’ orthotropic stiffness tensor bCort. If bC has orthotropic

symmetry, then �ort ¼ 0, otherwise �ort > 0. Some details are given in Appendix C. The orientation of the
orthotropy axes of that ‘closest’ orthotropic stiffness tensor is a byproduct of calculating �ort; this orien-

tation is characterised by the angle uort it encloses with the x1 direction.
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4. Results

4.1. Uniaxial compression

The first ‘experiment’ is a uniaxial compression in 2-direction where the lateral extension and a possible

shear deformation is unconstrained. This is achieved through setting P11 ¼ P21 ¼ ru12 ¼ 0 and prescribing

a non-zero value forru22 (cf. Asaro and Needleman, 1985). Fig. 1 shows the stress response as plots of each

component of s versus the corresponding component of the logarithmic stretch lnU . The compressive 22-

stress shows the typical, known from experiments, extended ‘plateau’ regime after an initial linear segment

(Miehe, 1998). 10 A sequence of the deformation patterns within the RVE is shown in Fig. 2. Above a

compression of 15%, bands of highly deformed cells develop as is seen in the deformation picture fore stage

(d). This, too, is observed in experimental investigations, cf. Bastawros et al. (2000). In the last stage (f), a
second band of collapsing cells has formed and it is interesting to note that the spacing between the two

bands is �4 cells which is precisely what is observed in a closed cell aluminum foam in the above mentioned

article. Fig. 3 depicts the yield surface (solid line) and the surface of constant complementary strain energy

(dashed line) at three different levels of compression: (a) 1%, (c) 10% and (f) 30% where the labels corre-

spond to the stages shown in Fig. 2. These surfaces are represented by three sections with the coordinate

planes in ‘pdz space’. Also shown is a trajectory of the stress path as a bold solid line. Since �s11 ¼ �s12 ¼ 0 it

lies on the line p ¼ d in the p–d plane. Finally, the direction of the inelastic strain rate as computed from
10 B

instead
11 T

examin
bDp ¼ U�T
p ð _EÞpU

�1
p ; ð80Þ
valid for small elastic strains, is indicated with arrows along the yield surface. It can be seen that at all

points these are indeed normal to the yield surface, as expected. Initially (Fig. 3(a)), the yield surface

exhibits an asymmetry in that the hydrostatic strength is different in tension and compression (d ¼ z ¼ 0).

But it is practically isotropic as can be concluded from the nearly circular shape in the d–z plane and the

symmetry of its shape with respect to the p-axis. The same holds for the strain energy surface: by definition
this is an ellipsoid and the plots show that it is an ellipsoid of revolution about the p-axis corresponding to

an isotropic stiffness bC (Fig. 3(a)). With ongoing deformation this ellipsoid gradually changes to have its

major principal axes oriented approximately along the line p ¼ �d in stage (f), with little deviation from an

ellipsoid of revolution. The same, in turn, can be said about the yield surface: regarding its overall

appearance, it gradually changes to a convex surface with its major dimension oriented in that same

direction. Note that this provides a picture, in terms of yield surface evolution, for the experimentally

observed increase of the uniaxial yield strength perpendicular to the uniaxial compression direction

(Deshpande and Fleck, 1999): In the p–d plane, uniaxial compression in the transverse direction corre-
sponds to the line p ¼ �d > 0 which is just the direction into which the major dimension of the yield surface

is rotated. Thus the ratio of transverse to axial yield strength is expected to increase as experimentally

observed.

The deviation of the yield surface from an ellipsoidal shape is firstly the mentioned asymmetry in

hydrostatic tension and compression (at early and intermediate stages), and secondly a ‘bulge’ in the

vicinity of the actual stress point. 11

To further characterise the evolution of the stiffness, the three principal values of the 2D 4th order tensorbC, which correspond to the squares of the semiaxes of the strain energy ellipsoid, are plotted against the
load parameter (in this case the uniaxial compression) in Fig. 4. The principal stiffness c3, corresponding
ecause J < 1 in this case, the compressive stress would not decrease if the 22-component of the Cauchy stress where plotted

of the Kirchhoff stress.

his indicates a vertex formation at the current stress point as predicted on theoretical grounds (Hill, 1967); a detailed

ation of this aspect will be presented in a forthcoming publication.
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initially to the compression modulus, is reduced to 40% of its initial value. Stiffness c2, corresponding
initially to a shear modulus, increases by 10% and then returns to its initial value, while c1 remains

essentially unchanged. The deviation from orthotropy as defined by (79) and the corresponding orientation

of the ‘closest’ orthotropy axes and the principal plastic stretch are shown in Fig. 5. As could be expected
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compression.
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for this proportional loading, the deviation from orthotropy is vanishingly small (Fig. 5(a)) and the cor-

responding orientation differs from zero – the plastic stretch direction – by only a few degrees (Fig. 5(b)). 12
4.2. Hydrostatic compression

For a prescribed hydrostatic compression with ru11 ¼ ru22 and ru12 ¼ P21 ¼ 0, the simulated stress

response shown in Fig. 6 exhibits a significant drop in the compressive normal stresses after initial yield
12 The first data point in the uort-plot is actually meaningless because at this stage bC is nearly isotropic and any small deviation from

isotropy leads to finite values for uort.
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with a subsequent plateau regime. As in the case of uniaxial compression, the compressive Cauchy stresses

would actually increase in the final stage because J decreases exponentially with lnU . The sharp pressure

drop, however, would remain and is in contrast to experimental observations. This effect is likely to be

related to the fact that a two dimensional model is used here; first results using a three dimensional beam
network do not exhibit this pressure drop but instead show a significant hardening.

Yield and energy surfaces after 25% hydrostatic compression are shown in Fig. 7. Isotropy in both is

maintained and the yield surface assumes an egg-like shape, again with a bulge at the loading point. As

before, the inelastic strain rate is found to be normal to the yield surface at all points.
4.3. Non-proportional loading

Both cases considered so far represent proportional loadings: The principal stretch directions remain
fixed during deformation. Therefore the retained isotropy for hydrostatic compression and the developing
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orthotropy for uniaxial compression are not surprising. To examine the effect of non-proportional loading,
a deformation history has been prescribed where the principal plastic stretches change monotonically to

�1.1 and 0.8 respectively, while the principal stretch direction rotates from zero to )35� relative to the x1-
axis. The corresponding snapshots of the deformed RVE are shown in Fig. 9. In stage (c), a band of

collapsed cells has formed like in the uniaxial case. A closer inspection shows that the orientation of this

band coincides with the principal stretch direction present at this stage – as could be expected. The stress

response is depicted in Fig. 8; it is rather difficult to interpret since all stress components are non-zero. But it

should be kept in mind that this somewhat unrealistic straining path is only meant to produce significant

changes of principal stretch direction. Yield and energy surface corresponding to stage (e) in Fig. 9 are
shown in Fig. 10. Like in the previous cases, the sections of yield and energy surfaces with the coordinate

planes exhibit similar shapes – save for the bulge at the loading point in the yield surface. The deviation of

the stiffness from orthotropy is visualised in Fig. 11(a) through the non-orthotropy measure �ort. Note that

the relative distance from the closest orthotropic stiffness is just 2% in the final stage. In view of the finite

stretches whose directions have swept over the material by a finite angle, this is a remarkable result. The

orientation of this direction of orthotropy is found to approximately coincide, at all stages, with the

changing direction of the principal plastic stretch – at least no other conclusion can be drawn from

Fig. 11(b).
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Finally, the evolution of the principal stiffnesses is plotted in Fig. 12. It differs qualitatively from that for

uniaxial compression (Fig. 4) – even though the final values of the stretch are similar: The principal stiffness

labelled c3, which corresponds to the initial compression modulus, first diminishes and then increases again
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to reach its initial value. This is in contrast to the proportional case where the corresponding stiffness

saturates at a significantly smaller value.
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5. Discussion

The computed yield surfaces presented in the previous section for the model material considered here

suggest a phenomenological representation as a quadratic function in the stresses, i.e. of the form
XðŝÞ ¼ 1

2
ŝ bGŝ: ð81Þ
This has been concluded in similar studies focussing on the initial yield surface of an irregular honeycomb
(Chen et al., 1999) and is found here to be a suitable approximation also for finite subsequent deformations.

As a refinement, this quadratic function could be augmented to reflect the presence of a bulge at the final

stress point of the path that has lead to the respective configuration. The numerical method presented above

could be used to produce ‘experimental’ data in order to find suitable expressions for this refinement. For

example, the variation of the direction and magnitude of the inelastic strain rate with the direction of the

stress rate can be computed directly.

An important observation is that the elastic and plastic properties of the considered model material are

closely related in that the elastic compliance bC�1 and the 4th order tensor bG in a quadratic fit of the yield
function have practically identical symmetry properties. Further, the above results suggest that both have

orthotropic symmetry and that the axes of orthotropy coincide with the principal directions of the plastic

stretch Up. It must be noted that this statement refers to the situation where the plastic stretch is measured

from an initially isotropic reference configuration as was – at least approximately – the case here. In

general, the choice of reference configuration is, of course, arbitrary and the above statement would not

make sense without this restriction. It must also be noted that isotropy of the yield and energy function in

the virgin state as exhibited in Fig. 3(a) does not imply ‘full’ isotropy of the material behaviour with respect

to the virgin state as the reference configuration. For example, if the microstructure consists of perfect
honeycombs then yield and energy surfaces are still isotropic, but the hardening is certainly not: Finite

compression in 1- and 2-direction will lead to a different response because the hexagon has no cubic

symmetry (cf. Hohe and Becker, 2003). Random variations of the hexagon-vertex positions have been

imposed here also to remove this particular type of anisotropy but it might still be present. In this context, it

is not clear if the qualitative difference in the stiffness evolution for the non-proportional and the uniaxial

case are a result of this ‘initial’ anisotropy or of the non-proportionality. Further studies are needed to

resolve this question.

A final comment relates to the two dimensional nature of the study. It has already been mentioned that
the hydrostatic compression test with a three dimensional beam structure leads to significantly different

results in that the pressure exhibits pronounced hardening after the elastic limit. Regarding the conclusions

drawn in the preceding paragraph about type and orientation of the evolving anisotropy, the influence of

using a two dimensional microstructure is not clear and likewise requires investigation.
Appendix A. The thermodynamic conjugate to bDp

With the notations
_UpU
�1
p

� 

sk
¼ cW 0p ðA:1Þ
the left hand side of (32) reads
�JpbR � _UpU
�1
p

� 

¼ �Jp bRsy � bDp

�
þ bRsk � cW 0p



: ðA:2Þ
Since cW 0p can be calculated from the knowledge of bDp and Up via (Mehrabadi and Nemat-Nasser, 1987)
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cW 0p ¼ ðIUp
IIUp

� JpÞ�1 I2Up
ðUp

bDp

h
� bDpUpÞ � IUp

U2
p
bDp

�
� bDpU

2
p



þ U2

p
bDpUp

�
�Up

bDpU
2
p


i
;

ðA:3Þ

the second term in (A.2) can be expressed as
bRsk � cW 0p ¼ bDp � ðIUp
IIUp

n
� JpÞ�1 I2Up

ðUp
bRsk

h
� bRskUpÞ � IUp

U2
p
bRsk

�
� bRskU

2
p



þ U2

p
bRskUp

�
�Up

bRskU
2
p


io
ðA:4Þ
from which (32) follows with the stress measure bK given explicitly by
bK ¼ �Jp bRsy

n
þ ðIUp

IIUp
� JpÞ�1 I2Up

ðUp
bRsk

h
� bRskUpÞ � IUp

U2
p
bRsk

�
� bRskU

2
p



þ U2

p
bRskUp

�
�Up

bRskU
2
p


io
: ðA:5Þ
This expression yields the representation (34) for the Cartesian components on the principal axis of Up.

Eqs. (A.3) and (A.5) can also be expressed as
cW 0p ¼ bX bDp;bK ¼ �JpðbRsy þ bXbRskÞ;
ðA:6Þ
involving the 4th order tensor bX, whose Cartesian components are given by
bXijkl ¼ ðIUp
IIUp

� JpÞ�1 I2Up
Up

ikdjl

�h
� dikU

p
jl



� IUp

Up
inU

p
nkdjl

�
� dikU

p
jnU

p
nl

�
þ Up

inU
p
nkU

p
jl

�
� Up

ikU
p
jnU

p
nl


i
:

ðA:7Þ

From (A.7) it is seen that bX has the symmetries
bXijkl ¼ bXklij ¼ � bXjilk ðA:8Þ

and therefore yields a skew symmetric 2nd order tensor when operating on a symmetric 2nd order tensor
and vice versa.

Appendix B. Derivation of (39)

Eq. (39) is the result of multiplying both sides of (10) by U�T
p and U�1

p from the left and right respectively

and using the chain rule. The quantities appearing in (39) are given by
bR ¼ bC bKT
þ

�h
þ bKT

�
bX
i�1

;

where bK� ¼ 1

2
obS bR� � bRT



;

in Cartesian components bK�ijkl ¼
1

4
bCe
ikdjl

�
� dik

bCe
jl þ bCe

ildjk � dil
bCe
jk



þ 1

2
bC�1

klpq
bSjpdiq

�
� djp

bSiq þ bSjqdip � djq
bSip



;

and cAi ¼ o2bE e
bM i

~w2e: ðB:1Þ
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Appendix C. Non-orthotropy measure

Employing the matrix notation
bS11bS22ffiffiffi
2

p bS12

264
375 ¼

Ĉ11 Ĉ12 Ĉ13

Ĉ12 Ĉ22 Ĉ23

Ĉ13 Ĉ23 Ĉ33

264
375 bE11bE22ffiffiffi

2
p bE12

264
375 ðC:1Þ
for the two dimensional version of Hooke’s law (58), i.e.
Ĉ11 ¼ Ĉ1111; Ĉ22 ¼ Ĉ2222; Ĉ33 ¼ 2Ĉ1212;

Ĉ12 ¼ Ĉ1122; Ĉ13 ¼
ffiffiffi
2

p
Ĉ1112; Ĉ23 ¼

ffiffiffi
2

p
Ĉ2212;

ðC:2Þ
one can show that �ort is expressible as
�ort ¼ min
u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðĈ0

13ðuÞÞ
2 þ ðĈ0

23ðuÞÞ
2

q  ffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
Ĉ2

ij

q
: ðC:3Þ
Here, Ĉ0
ijðuÞ are the corresponding matrix components of the tensor
bC0ðuÞ ¼ QðuÞ 
 bC ðC:4Þ
with Q an orthogonal tensor representing a rotation about the x3-axis. The minimiser uort of (C.3) is the

direction of the closest orthotropy axes.
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