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Abstract

This work tries to define, analyse and quantify the elastic and plastic anisotropy that develops after some defor-
mation history involving finite (plastic) strains in a two dimensional cellular material. The internal variable framework
for the description of elasto-plastic material behaviour in the presence of anisotropy is briefly reviewed; the multipli-
cative decomposition of the deformation gradient into elastic and plastic parts is utilised, which is viewed here as an
inevitable consequence of the assumption of the existence of a range of elastic material response. It is shown that the
stress thermodynamically conjugate to what is commonly called the plastic velocity gradient is symmetric, as a result of
describing the elastic behaviour with — possibly evolving — structure tensors as additional arguments in the free energy
function. Some existing formulations of anisotropic plasticity are compared, discussing in particular the formulations of
the normality rule and the assumptions regarding the elastic behaviour. The main part of the article is devoted to the
presentation of the simulated response, obtained by numerical homogenisation, of a two dimensional cellular model
material to selected straining paths. Specifically, the evolving elastic and plastic anisotropies are characterised in terms
of computed yield surfaces and surfaces of constant strain energy in stress space. It is found that the elastic and plastic
anisotropies are closely related and do not differ significantly from an orthotropic symmetry whose axes coincide with
the principal plastic stretch directions, even for strongly non-proportional loading paths.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Advances in manufacturing technology during the past years have made metal foams available for
industrial applications that exploit their specific mechanical, thermal and/or acoustic properties. Potential
applications include, among others, energy absorbing components, sandwich structures and heat exchangers
(Gibson and Ashby, 1998) and the successful utilisation of this type of material requires a thorough
understanding of its mechanical properties. Due to their cellular microstructure, metal foams are capable of
undergoing very large — usually compressive — strains. Because of the ductile behaviour of the cell wall

Tel.: +49-6151-162974; fax: +49-6151-163018.
E-mail address: i.schmidt@mechanik.tu-darmstadt.de (I. Schmidt).

0020-7683/$ - see front matter © 2004 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ijsolstr.2004.05.021


mail to: i.schmidt@mechanik.tu-darmstadt.de

6760 L Schmidt | International Journal of Solids and Structures 41 (2004) 67596782

material, these large strains are accompanied by large irreversible changes in the geometry of the micro-
structure which, in turn, leads to significant changes in the (macroscopic) mechanical properties. In par-
ticular, an anisotropy in both elastic and plastic properties must be expected to evolve. This phenomenon
was illustrated in Deshpande and Fleck (1999) where the uniaxial yield strength perpendicular to the
direction of a prior uniaxial compression was determined experimentally and was found to be nearly twice
that of the compressive direction. Other experiments show that the Young’s modulus, measured by
unloading a compressive specimen, is reduced to about half its initial value after 10% uniaxial logarithmic
compressive strain (Bastawros et al., 2000). This type of behaviour is obviously not restricted to cellular
materials: Fully dense, polycrystalline metals, e.g., develop a macroscopic anisotropy as a result chiefly of
texture formation when they are ‘heavily’ deformed (Kocks et al., 1998). Usually, however, the changes in
the elastic properties are relatively small and the texture evolution becomes important only for very large
strains. In contrast, a high porosity of a material makes morphological changes of the microstructure easier
and the effect of anisotropy evolution is much more pronounced. Another example in this context is the cold
compaction of powders. Beginning from a dense random packed aggregate of the powder, the contact areas
between individual particles grow and are created in response to a macroscopic stress. A non-hydrostatic
macroscopic stress will induce an anisotropic distribution of these contact areas; at later stages of the
process, when the material can be viewed as a solid containing voids, the shape of the voids will be non-
spherical, again resulting in a macroscopic anisotropy (cf. Akisanya et al., 1985; Rottmann et al., 2001).

Even though the essentials of a theory for elasto-plastic material behaviour date back some decades (Hill,
1978; Mandel, 1974; Rice, 1971) there is an ongoing discussion about several aspects of fundamental nature.
These relate to the identification of elastic and plastic strains and their rates, the appropriateness of certain
invariance requirements, the role of whatever is meant by the term ‘plastic spin’ and also to the formulation
of the normality law. The points of disagreement become particularly apparent when large elastic strains
and/or anisotropy are considered. Some of the more recent publications in this context include (Miehe, 1998;
Hackl, 1997; Svendsen, 2001; Dafalias, 1998; Scheidler and Wright, 2001; Rubin, 1994; Bertram, 1998).

Apart from the more fundamental differences, there is a multitude of specific yield criteria and hardening
rules proposed in the literature that can hardly be overlooked. We mention the works of Papadopoulos and
Lu (2001), Tsakmakis (2004), Bruhns et al. (1999), Reese (2003), Eidel and Gruttmann (2003), Menzel and
Steinmann (2003), Ekh and Runesson (2001) and Sidoroff and Dogui (2001).

Often, the differences between the many proposals regarding both fundamental aspects and details of a
specific model are hidden behind a large body of formulas and a comparison with other existing models is
routinely not made. Since the primary purpose of this work is to analyse the evolving anisotropy in metallic
foams, and since some concepts for its description are not generally agreed upon, it is necessary to spend some
words on the aforementioned general aspects of the theory. In the course of doing so, some of the above
mentioned models will be discussed; this is done in Section 2. Some definitions related to the homogenisation
procedure are recalled in Section 3, followed by the presentation of the numerical results in Section 4.

2. Constitutive framework for elasto-plasticity
2.1. Internal variable formalism
Following Rice (1971) ! or Coleman and Gurtin (1967), an internal variable description of rate inde-

pendent inelastic material behaviour for an isothermal process is represented by constitutive relations for
the Helmholtz free energy density y/, per unit reference volume, and the Piola—Kirchhoff stress P in the form

! Rice’s analysis is based on the consideration of representative volume element of the material and the ‘internal variables’ are not
macroscopically defined quantities as in (1) but their rates are meant to represent microstructural changes at various sites in that
representative volume.
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'ﬁzlﬁl(F,E)» (1)
P=P(FQ),
in which & denotes a set of n internal variables ¢, o =1,...,n, embodying the past history of the defor-

mation gradient F at the point of interest. The above relations need to be completed by the specification of
the evolution of the internal variables in the form

&, = 2g1(F, 8), (2)

where the multiplier / is a positive homogeneous function of degree one in F. With the definition of
thermodynamic conjugates to the £’s, the ‘forces’

f==0:,(F.%), 3)
and the assumption that, at any instant, the stresses are determined through the usual potential relation

P =00 (F.5), @
the dissipation rate density J, per unit reference volume, is given by

s=P-F—y,=f¢E (%)

The second law is then expressed in the form of the Clausius—-Duhem inequality as 6 > 0, where the
underlying hypotheses is that the process can be treated as a sequence of constrained equilibrium states.
Material frame indifferent forms of the above constitutive relations, satisfying

F,&) =y, (F, T 1
W) e e
read, as usual,
Y= ‘pz(E ) E),
S = dgy,(E, 9), (7)
& = ign(E, )
in terms of rotation invariant, conjugate stress and strain measures, e.g. the Green—Lagrange strain

E:%(C—l), C=F'F (8)

and the symmetric Piola—Kirchhoff stress
S=F"'P. 9)

Finally, the yield function Q of the material is introduced with Q(S) <0 specifying the domain, in stress
space, of elastic material response.

In the following, the focus will be on ‘associative’ inelasticity and different versions of what is called
‘normality rule’ will be juxtaposed. In particular, the notion of normality in the sense of Rice (1971) and
Hill and Rice (1973), as expressed through >

(E), =E - C'S=)05Q, where C=0},,(E,f), (10)

2 In (10) (E )p is not the time derivative of any tensorial quantity; in particular, it is not, in general, the time derivative of a ‘plastic
strain’, however defined: the statement is independent of whether or not there exists a permanent strain after unloading.
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and the so called standard dissipative medium flow rule, given by
& =0;0(f,) (11)

in terms of a flow potential @, will be considered. The statement (10), which holds for any work conjugate
pair of stress and strain measure, any choice of reference configuration and unrestricted deformations,
can be viewed as a consequence of assuming that the rate of each internal variable is governed by its
associated thermodynamic force, i.e. g,(E, &) = h,(f,(E, &), £). While this is expressed here in terms of
the macroscopic internal variables, it is emphasised that the underlying assumption in Rice (1971) leading
to (10) is less restrictive: Neither s nor 4, needs to be a point function of the &’s, only the dissipation is
required to be expressible as in (5). On the other hand, the flow rule (11) can be seen as a consequence of
the assumption that (i) the yield function is stress state dependent only through the thermodynamic forces

f, le.
Q(8) = o(f(S), 9), (12)

and that (ii) the evolution of the internal variables takes place such that for a given stress state the dissi-
pation (5) is maximised. This concept can be found, in different forms, in the works of Ziegler and Wehrli
(1987), Halphen and Nguyen (1975) and Hill (1948).

Relation (10) is, in principle, experimentally verifiable because all quantities appearing there are mea-
surable. Furthermore, it is implied by (11) which can therefore be excluded if (10) does not hold. Con-
versely, if (10) holds, then (11) represents a possible approach but the flow potential @ appearing there is
not measurable when the dimension of f is larger than that of S.

2.2. Multiplicative split of the deformation gradient

Rather than beginning a further specification of the constitutive relations (1) and (2) with introducing the
multiplicative decomposition of the deformation gradient (14) we prefer the following line of thought: The
assumption that after some deformation history there always exists a range of elastic material response
means that we can always use the elasticity relation (4) to define

Fp = arg;nin[wl(F7 é)]g:consL = aFlpl(Fv 5) F—F =0 (13)
B

which, of course, identifies the stress free intermediate configuration. As a consequence of (6), the definition

(13) leaves unspecified the orthogonal part R,, but uniquely determines the right stretch part U, of the

polar decomposition F, = R,U,. If we decide to take the configuration F = F, with some arbitrarily
chosen R, as the reference configuration then

F.=FF,' =FU,'R; (14)

is the deformation gradient based on that configuration. Suppose now that an experimentalist were given a
plastically deformed piece of material whose elastic properties are to be determined, and suppose further
that he or she is able to provide a functional relation

P = P(F,) (15)

for the Piola—Kirchhoff Stress P, based on the intermediate configuration, that accurately describes the
elastic behaviour of the material. The free energy , per unit volume of the intermediate configuration, of
the material is then necessarily of the form (cf. Rice, 1975)

IL = lZle(Fe) + lzpv (16)
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where th, an integration constant, is independent of F. and fpel has the property

P :aFe(ple(Fe)- (17)

Material frame indifferent forms of (16) and (17) are given by

'L = "LZC(ES) + lppa

- L (18)
$ =0, Un(Eo),
in terms of the Green-Lagrange strain
Ee:%(a—l), C.=F'F, (19)
and the symmetric Piola—Kirchhoff stress
S=F'P (20)

both referring to the intermediate configuration. Without loss of generality we can choose fpk(O) =0 so
that y,, and v, represent, respectively, the recoverable strain energy and the free energy ‘locked’ in the
material after unloading, since S(E. = 0) = 0 by definition.

Now if (18) describes anisotropic elasticity, then the argument list in the strain energy function must

contain, apart from E., additional tensorial arguments, denoted by, say, M;, i =1,2,..., such that y,,
becomes an isotropic function of its arguments, i.e. *

Va(@+ E; @+ M) = (Es M) VQ:0" =07, (21)
or, equivalently, in terms of function 1/;16:

Vie(FQ':Q% M) = (Fs M) ¥Q:Q" =07 (22)
Here, the notation @ * A is defined through

(Q * A)iliz...in = Qilkl Qizkz ce QinknA/ﬂkzmkn (23)

for a tensor A of nth order. Eq. (21) can be understood quite simply as the requirement that 1}23 be
independent of the choice of coordinate system with respect to which the components of E. are written out.
Alternatively, it can be understood as the requirement that the strain energy be independent of the ori-
entation of the reference configuration: Had we chosen another reference configuration F, differing from
the first only through F = QF , (i.e. U, = U,) then the Green-Lagrange strain and the structure tensors

would be *
E = *Ee,
° 0 _ (24)
M:(:Q*Miv

and it is seen from (21) that such a change leaves the strain energy unaltered (the same holds for the free
energy (16) because the constant v, is trivially invariant). > With (14) we can now write

lple:{ple(FFgl;Mi% (25)

3 In order to avoid the introduction of too many symbols, {[/23 has been used in both (18) and (21) although the functions there have
a different number of arguments.

4 This is a consequence of (19) and (14) and the fact that Q represents a rigid body rotation.

3 This point of view is also expressed in, e.g., Svendsen (2001), Dafalias (1998) and Lubarda and Krajcinovic (1995).
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where it is important to note that F,, and the M i’s are not independent as expressed in (24),. For this reason,
one cannot perform a partial differentiation with respect to F, holding M, fixed. Using (24) to define the
structure tensors in the unrotated configuration by

Mi:RZ*Mh (26)
and applying (22) with Q = R, (25) reads
lzle:l/}le(FUgl;M[)' (27)

Since the volumes in the reference and intermediate configuration differ by a factor J, = det U}, so that
V= lﬁ we are lead to the following form of the referential free energy density

Y (F. &) :Jp‘/’le(FU; M) —&-Jplﬁp(C) = (F, Up7MiaZ) (28)
—//\_’ \.\,_:/
ch(F Up M) l/’p<Up<,<)

in which one identifies U, and the M s as distinguished members of the vector é the remaining part of
which is denoted by [ It should be noted that, though (28) might suggest otherwise, i, does not necessarily
depend on U, explicitly, either through J, or otherwise. Any such dependence, however, is either through
the invariants of U, or through additional structural tensors which also transform with (24).

To summarise: The single requirement that after any inelastic deformation history there exists an elastic
potential necessitates, without any further assumption that is not generally agreed upon,

(1) the additive structure of the free energy consisting of a ‘locked in’ free energy and a recoverable strain
energy part, whose form is entirely determined through the measurable elastic response and
(i) the invariance of the free energy with respect to the orthogonal part of Fy,.

The significance of (28) arises from the fact that, within this framework, the stresses are assumed to be
given by the potential relation (4) also for inelastic processes.

2.3. Flow rules

2.3.1. The general case

A crucial point in setting up the evolution equations for the internal variables is the identification of the
thermodynamically conjugate forces (3). For the above derived structure of the referential free energy,
without further specifying the functional form of ,, the dissipation (5) takes the form

8= —Qu¥e) - Uy — (0 Y1) - (M) — . (29)
The first term in (29) can be rearranged as

@) Uy = = (00, U UF) - (0,07") = =4E - (6,0;"), (30)
where

=y, 1-C.S (31)

is Eshelby’s energy momentum tensor based on the unrotated intermediate configuration with C . and S
given by (19), and (20) evaluated with R, = 1. The second term in (31) is known as (the negative of)
Mandel’s stress which would be the only term had we assumed either plastic incompressibility J, = 1 or a
specific dependence of the structural tensors on J,,. The term (30) can also be expressed as (see Appendix A)
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~ o~

~h%-(0,U;") = 4D, (32)
where
D, = (0,0,") . (33)

and the Cartesian components of the stress measure A with respect to a coordinate system aligned with the
principal directions of U, are given by

~ - b — /Ij’
Ay =—Jp Zij + 211 /'{p 7 (34)
j

in which Z ¥ and ZSk denote, respectively, the corresponding components of the symmetric and skew
symmetric part of X, and /P are the principal values of U,. With the notation

—0c U = G, (35)

the dissipation is now expressed as
5=A4-D,+G,- (M) —, (36)
For a standard dissipative medium the evolution equations would be of the form

D, = /o~®(A, G)),
- o (37)
(Ml) = )\,a’G\ ¢(A, G,)

Since the two thermodynamic ‘forces’ A and 6;,- result from the deformation dependent part ¥/, of the free
energy via (34) and (35), their value will depend on the current stress state. The forces conjugate to all other
internal variables ( are, in contrast, independent of the current stress state, because /, does not depend on
F. 1t follows that the relation between the (measurable) yield surface in stress space Q2 and the flow potential
@ (cf. (12)) is of the form

Q(S) = D(A(S), Gi(S)), (38)

where we have omitted the dependence of @ on the forces conjugate to the {’s, which describe the hardening
of the material. It is important to note that while the function Q(S) is, in principle, experimentally mea-
surable, (15(A G, ;) is not, because it is impossible to vary one of its arguments while keeping the other fixed:
The knowledge of the yield surface in stress space, however precise, contains no information about the flow
potential other than what is expressed in (38).

For the most general case in which the elastic properties are allowed to evolve arbitrarily, the normality
rule (10) can be rewritten in terms of quantities defined on the (unrotated) intermediate configuration as

p—/laA ( )—I—]R,sz{( i) (39)

The 4th order tensor R and the (2 + order-of-M ,th order tensors ZJ,- depend on the current stress state and
the plastic stretch and are given in Appendix B. Eq. (39) is the precise statement of ‘normality’ in the sense
of Hill and Rice in the context of the widely used multiplicative decomposition of F. In the large elastic
strain case, the knowledge of the measurable yield surface in stress space does not allow for the determi-
nation of direction of plastic flow, unless the evolution of the structure tensors is specified. It is emphasised
that the differentiation in (39) involves the yield surface Q (in the space of the stress measure A), in contrast
to (37); involving that of the flow potential @.
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Remark: The right hand side of Eq. (32) can be transformed yet further to give

Z~BP:(RP*Z)-(RP*BP):Z-l~)p, (40)
and since
D,=R,«D, =R, + (UpU;I)Sy - (FPF;I)Sy, (41)

(40) identifies the symmetric tensor A= R, * A as the work conjugate to what is commonly called the
‘plastic velocity gradient’.
It is a simple matter to rewrite (37) in terms of quantities defined in the rotated intermediate configu-

ration. Using (26) and (41) and the convention () = R, () the result is ©
D, = 0~d(4,G)),
ot . (42)
(M) = (M) — 2,M,; — M, 2, = 0; (4, G),

where the spin S~2p = RPRE can be prescribed arbitrarily.

2.3.2. Unchanged elastic properties

In metal plasticity, it is typically observed that ‘the elastic properties’ of the material are unaffected by
plastic deformation. In particular, this is so for elastically isotropic polycrystals when texture effects are
negligible and for anisotropic single crystals deforming by crystallographic slip. The meaning of this
statement is that if

P = h(F) (43)
was the elasticity relation before the occurrence of plastic deformation, then
P =h(F.) (44)

with the same function h and some properly chosen R, is the elasticity relation after a plastic deformation
U,. This identifies the so called isoclinic intermediate configuration which is characterised by the fact that
the structure tensors M in this configuration remain constant throughout the deformation:

(M) =0. (45)

It is only in this case that we can attach a constitutive meaning to the orthogonal part of F,: because of (45),
the M; in (25) are constant parameters and the referential free energy takes the form

U (F, &) = Ty o(FF) 4+ Jy, () = U, (F, Fy, 0). (46)
—_——— ——
V¥1e(FFp) Vp(Fp.0)

-,

By definition, function n_}l (F,Fy,{) in (46) is not invariant with respect to the orthogonal part of F,, and it
does not make sense to require such an invariance.
The same calculation that lead to (36) now gives

o= —JoX-L,—,, (47)
identifying the (non-symmetric) Eshelby stress as the work conjugate to the ‘plastic velocity gradient’

L, = F,F, =Ry s (U,U,") + R, (48)

© Written out here for the case that the M ;’s are 2nd order tensors. More generally one has (ZT/I [)D =R, * [Rg « M ,} .
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With the above identification, the ‘flow rule’ for a standard dissipative medium would now be of the form
L, =70 _, 5 ®(~}%) (49)

which is, although seemingly different, just a special case of (37): The evolution equations (37), for the
structural tensors M; have been replaced here by one for the orientation R, which is hidden in the skew
symmetric part of (49). It is important to realise that, as in (37), the differentiation in (49) involves the flow
potential @ which, although in this case depending on only one single tensorial stress measure, must not be
confused with the measurable yield surface in stress space Q. The relation between the two is, as before,

Q(S) = B(~J,X(S)) (50)
and the Hill and Rice statement of ‘normality’ reads

D, = jo-0(4) - R/ (2,M;+ M;Q]) with 2, = R} R,. (51)

2.3.3. Isotropic elasticity

For completeness, the case of unchanged isotropic elastic properties (in the intermediate configuration) is
recorded here. Due to the coaxiality of C. and §, the Eshelby stress is symmetric in this case, X = T and
is, up to a scalar factor, identical to the previously introduced stress measure A (cf. (34)):

A=—J,%. (52)
The dissipation consequently reads

5=4-Dy—i, (53)
and the standard dissipative medium flow rule becomes

D, = i@;cb(A). (54)

Since now A is the only stress dependent thermodynamic force, the relation between @ and Q is
Q(S) = ¢(A4(S)) (55)

which shows that flow potential and yield surface are in this case identical functions. The Hill and Rice
statement of normality becomes

D, = /16;9(2 ) (56)

and is seen to be equivalent to (54) — in contrast to the anisotropic case where (39) is only necessary for (37).

2.3.4. Small elastic strains }
_ In practically important cases the elastic strains are small, i.e. || E.|| < 1, and it suffices to take function
W, 1n (21) as quadratic in its first argument:

O PO

JlE ©) = B (TE.) (57)
so that the elasticity relation is simply

S = CE.. (58)
Note that (58) implies the relation

S =Cy(E - E,) (59)
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in terms of referential quantities, where
Co = J,F,"  C. (60)

Therefore, if C is constant during an inelastic process, then €, is not and vice versa. A similar statement
holds if an additive split of generalised Lagrangean strain measures is used as in Papadopoulos and Lu
(2001), Miehe et al. (2002) and Loblein et al. (2003). In these formulations, the linear elastic stiffness in the
intermediate configuration does not remain constant (cf. Schmidt, in press).

The elastic stiffness tensor € now plays the role of one of the structure tensors introduced previously
(there being only one of 4th order in this case). The conjugate ‘force’ is given by

E = —0-(Jy0) = —Jp%fee ® E.. (61)
The stress measure A in (34) reduces to

A~ JPS’ AT, (62)
the back rotated Kirchhoff stress, so that in this case the standard dissipative medium flow rules would be

D, = 20:9(z, E),
@f): i@g(b((t, ITE)). (63)

Regarding the Hill and Rice normality, the second term in (39) can be shown to be negligible, if the overall
change of C is or, otherwise, if the plastic strain accompanying a significant change of C is finite (i.e. large
compared to the elastic strain). Thus, with (62), (39) reduces to

D, = )0.Q(x), (64)

and this is indistinguishable from (63),. For future reference, the complementary elastic potential, per unit
reference volume, is introduced here as

o) =37 () 19), (65)
so that
Ee = afgoe(f)' (66)

2.4. Comparison with other formulations

The formulation developed so far is similar to the work of Svendsen (2001) who also considered evolving
structure tensors as additional arguments in the free energy function. The quantity A has also been
introduced there and has been calculated for a specific form of the strain energy function; the general
explicit formulas (34)/(A.5) appear to be new. Moreover, the case of associated evolution equations is not
considered in detail in Svendsens work and the different normality rules are not discussed.

The above formulation is also equivalent to that outlined in Miehe (1998) when his ‘plastic metric’ is
identified with U, and a particular dependence of the free energy on that quantity is assumed a priori. The
relation to models working with a nine dimensional internal variable F,, i.e. R, # 1, and also to models
using an additive split of a Lagrangean strain measure is not discussed in detail. Also, we remark that the
split of the free energy into volumetric and isochoric contributions, proposed by Miehe (1998), is only
possible for the case of isotropy or orthotropy with cubic symmetry: For any other material symmetry, the
deviatoric stresses will depend on the volumetric strains and vice versa.
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Eq. (50) clearly shows the interrelation between the normal to the yield surface, the direction of plastic
flow and the spin €2, (for the special case of unchanged elastic properties). A different form of it, namely

(CeLp)y +2C ' (LyS),, = 13:0(S), (67)

containing the same physical statement for the special case of plastic incompressibility, J, = 1, has been
derived in Lubliner (1986) pointing out in particular the lacking equivalence to (49), which is questioned for
this reason. The viewpoint taken here is that there is a conceptual difference between functions Q and @
which is not appreciated in Lubliner’s article. ’

Eq. (67), and therefore (51), is not equivalent to the normality rule proposed by Maugin (1994), which
reads

(CeLy)y, = ;va»svg(fc). (68)
It is motivated by the fact that the first term in (47) is also expressible as ®

~J,X-Ly=(C.8)-L,=S-(C.L,) (69)

sy?

due to the symmetry of S, and so identifies the latter as the *force’ conjugate to the “flux’ (6 L p)sy The
reason for this discrepancy is that this flux is no time derivative of any quantity; it appears_ conceptually
flaw to maximise (69) by comparing its value for different S at fixed (C L,),, because C. and S are
obviously not independent.

Lubarda and Krajcinovic (1995) give a detailed discussion of the constitutive framework for damage-
elasto-plasticity, i.e. plasticity accompanied by changing elastic properties. They particularly consider the
case specified by (57) (but without restricting the magnitude of || E.||). Their approach is characterised by
introducing a further decomposmon of the inelastic part (E i )p of the strain rate (cf. (10)) into damage and
plastic parts defined by (E), = (€,"')'S and (E) o= =E,=(U,U p)sy Tespectively. The existence of fwo dlf
ferent potentials for the total inelastic and the ddmdge part of the strdln rate is then postulated such that °

(E), o 0s2(S), (), o 05'P(S). (70)

In the associated case to be compared with the present approach, these potentials are identical to
inelastic yield and damage functions, with the surfaces Q2 = 0 and ¥ = 0 identifying the boundary of the
elastic domain and the onset of damage respectively. We remark that, since damage is clearly an inelastic
process, Q cannot be greater than . On the other hand, if damage occurs then both Q and ¥ must be zero
and since the two surfaces cannot intersect, they must share the same normal in stress space. This places
severe restrictions on the functional forms of these potentials which seem difficult to satisfy in a specific
model.

3. Homogenisation

The aim of the following sections is to determine, for a model material to be described shortly, the
evolution of the elastic stiffness and the shape of the yield function, as defined in (57) and (64), for selected
deformation histories. Specifically, the elastic and plastic anisotropies will be represented by iso-surfaces of

7 The recent article of Cleja-Tigoiu (2003) is also centred around the different normality statements but has not been fully
understood by the present author.

8 Plastic incompressibility is assumed here.

 More precisely, function ¥ is assumed to depend on the stress through E — E,,, the referential counterpart of E in (61), and, in
contrast to the yield function in the present article, function Q is taken to depend also explicitly on the referential compliance € !
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the yield function Q and the strain energy ¢ in the space of the back rotated Kirchhoff stress 7. These will be
computed by a ‘direct numerical homogenisation’ considering a representative elementary volume (RVE) of
a 2D cellular material. The details are briefly described next.

3.1. Macroscopic variables

Let Z denote the referential domain of the RVE, 0% its boundary with unit outward normal N, V its
volume, x the deformed position of a point originally located at X and ¢ the traction vector. The macro-
scopic deformation gradient and Piola—Kirchhoff stress are defined as

F:l/ x®Ndd, P:l/ t© X dd (71)
V' Jor V Jor

and from these other stress and strain measures are computed in the usual way. A rectangular two
dimensional domain Z is considered and with ( )i identifying cell edges opposite to each other, periodic
boundary conditions on 0% are applied according to

xT—x =FX —-X), tt+t =0. (72)

3.2. Microstructure

As a 2D cellular model material an irregular hexagonal honeycomb structure as shown in Fig. 2(a) is
considered. The structure is generated by randomly perturbing the vertex positions of a regular honeycomb
up to 50% of the average cell wall length. With their length being large compared to the thickness, the cell
walls are treated as slender beams. Moreover, one or two parabola-shaped wiggles are introduced in each
beam as another typical imperfection observed in real metallic foams. The positions of vertices belonging to
beams that cross the cell boundary are adjusted so as to produce a perfectly periodic structure without
kinked beams. In terms of the beams’ translational and rotational degrees of freedom u and ¢ and their
conjugates f and m the periodic boundary conditions are

ut—u =Vu X" -X), ff+f =0,

o —¢ =0, m +m =0 (73)

with Vu denoting the macroscopic displacement gradient. This allows to prescribe separately histories for
each single component of either the macrodisplacement gradient or the macro-Piola—Kirchhoff stress on a
Cartesian basis coinciding with the normals to the cell faces.

The cell wall material is taken to be elastic-ideally plastic with Young’s modulus £ = 5 x 10* N/mm? and
yield strain e, = 0.2%. The ratio of thickness to average beam length is #/¢ = 0.05 and the height of the
wiggles is up to 0.07¢. No hardening, neither isotropic nor kinematic, is assumed on the microlevel in order
to bring about the influence of the changing geometry of the microstructure. The RVE is approximately of
square shape with edge length ~14 cells. The beams are discretised with up to seven linear Timoshenko
beam elements and the numerical computation has been performed using the commercial FEM code
ABAQUS/explicit.

3.3. Elastic and plastic properties
At selected points in a loading programme, the deformation process is interrupted and the linear re-

sponse at frozen inelastic variables to three independent macroscopic strains is used to compute the (ref-
erential) elastic stiffness via numerical differentiation:
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oS

C:@

E,=const.

From this, the current plastic stretch is computed as
U,=VC-2C"'S (75)

and the stiffness in the unrotated intermediate configuration follows as
C=JU,+C. (76)

Subsequently, the structure is unloaded to (approximately) zero macroscopic stress by prescribing a total
deformation equal to the above determined plastic stretch. If the elastic stiffness computed from (74) were
exact, this would obviously correspond to § = 0 exactly. Hence, the deviation of S from zero after this
unloading is a measure for the quality of both the assumption of linear elastic response and the way to
compute € and U,,.

To determine the yield surface, the RVE is then loaded in a prescribed stress space direction until the
deviation from linearity — as defined by the previously computed stiffness and plastic strain — is greater than
a certain offset. In particular,

I(E — Ep) = C'S|| > (77)

is taken to define yield, where € is typically chosen as 0.2%. Moreover, the plastic part of the strain rate, as
defined by the left hand side of (10), is evaluated for this particular loading direction. This procedure is
repeated for different stress space directions until the yield surface is sufficiently well resolved.

The elastic and plastic properties so determined are depicted as plane sections through the yield surface
and the surface of constant (complementary) strain energy in a three dimensional coordinate system with
axes p, d and z, where

1 1
PZE‘/E(T22+7‘:11)7 dzi\/i(fzz—fn)v 2=V (78)

in terms of the components of the back rotated Kirchhoff stress in a Cartesian basis coinciding with the
normals to the cell faces. In this representation, an isotropic function of 7 is a surface of revolution around
the p-axis; in particular, an isotropic quadratic function is an ellipsoid of revolution. An orthotropic
function of 7 is less simple to recognise in the said plot; in order to quantify the deviation of the stiffness
moduli € from orthotropy, a measure is introduced according to

€ort = Min w (79)

o T
which is the normalised distance from the ‘closest’ orthotropic stiffness tensor (lA:oﬂ. If € has orthotropic
symmetry, then e, = 0, otherwise ¢,y > 0. Some details are given in Appendix C. The orientation of the
orthotropy axes of that ‘closest’ orthotropic stiffness tensor is a byproduct of calculating e,,; this orien-
tation is characterised by the angle ¢, it encloses with the x; direction.
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4. Results
4.1. Uniaxial compression

The first ‘experiment’ is a uniaxial compression in 2-direction where the lateral extension and a possible
shear deformation is unconstrained. This is achieved through setting P;; = P»; = Vu;, = 0 and prescribing
a non-zero value for Vu,, (cf. Asaro and Needleman, 1985). Fig. 1 shows the stress response as plots of each
component of 7 versus the corresponding component of the logarithmic stretch In U. The compressive 22-
stress shows the typical, known from experiments, extended ‘plateau’ regime after an initial linear segment
(Miehe, 1998). '® A sequence of the deformation patterns within the RVE is shown in Fig. 2. Above a
compression of 15%, bands of highly deformed cells develop as is seen in the deformation picture fore stage
(d). This, too, is observed in experimental investigations, cf. Bastawros et al. (2000). In the last stage (f), a
second band of collapsing cells has formed and it is interesting to note that the spacing between the two
bands is a4 cells which is precisely what is observed in a closed cell aluminum foam in the above mentioned
article. Fig. 3 depicts the yield surface (solid line) and the surface of constant complementary strain energy
(dashed line) at three different levels of compression: (a) 1%, (c) 10% and (f) 30% where the labels corre-
spond to the stages shown in Fig. 2. These surfaces are represented by three sections with the coordinate
planes in ‘pdz space’. Also shown is a trajectory of the stress path as a bold solid line. Since 7, =7, =0 it
lies on the line p = d in the p—d plane. Finally, the direction of the inelastic strain rate as computed from

D,=U,"(E),U,", (80)

valid for small elastic strains, is indicated with arrows along the yield surface. It can be seen that at all
points these are indeed normal to the yield surface, as expected. Initially (Fig. 3(a)), the yield surface
exhibits an asymmetry in that the hydrostatic strength is different in tension and compression (d = z = 0).
But it is practically isotropic as can be concluded from the nearly circular shape in the d—z plane and the
symmetry of its shape with respect to the p-axis. The same holds for the strain energy surface: by definition
this is an ellipsoid and the plots show that it is an ellipsoid of revolution about the p-axis corresponding to
an isotropic stiffness € (Fig. 3(a)). With ongoing deformation this ellipsoid gradually changes to have its
major principal axes oriented approximately along the line p = —d in stage (f), with little deviation from an
ellipsoid of revolution. The same, in turn, can be said about the yield surface: regarding its overall
appearance, it gradually changes to a convex surface with its major dimension oriented in that same
direction. Note that this provides a picture, in terms of yield surface evolution, for the experimentally
observed increase of the uniaxial yield strength perpendicular to the uniaxial compression direction
(Deshpande and Fleck, 1999): In the p—d plane, uniaxial compression in the transverse direction corre-
sponds to the line p = —d > 0 which is just the direction into which the major dimension of the yield surface
is rotated. Thus the ratio of transverse to axial yield strength is expected to increase as experimentally
observed.

The deviation of the yield surface from an ellipsoidal shape is firstly the mentioned asymmetry in
hydrostatic tension and compression (at early and intermediate stages), and secondly a ‘bulge’ in the
vicinity of the actual stress point. !

__ To further characterise the evolution of the stiffness, the three principal values of the 2D 4th order tensor
C, which correspond to the squares of the semiaxes of the strain energy ellipsoid, are plotted against the
load parameter (in this case the uniaxial compression) in Fig. 4. The principal stiffness ¢3, corresponding

19 Because J < 1 in this case, the compressive stress would not decrease if the 22-component of the Cauchy stress where plotted
instead of the Kirchhof stress.

"' This indicates a vertex formation at the current stress point as predicted on theoretical grounds (Hill, 1967); a detailed
examination of this aspect will be presented in a forthcoming publication.
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Fig. 1. Stress response to uniaxial compression. Each component of 7 is plotted versus the corresponding component of In U.
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Fig. 2. Deformed configurations of the RVE at different load levels for uniaxial compression. The individual pictures correspond to the

markers in Fig. 1.

initially to the compression modulus, is reduced to 40% of its initial value. Stiffness ¢,, corresponding
initially to a shear modulus, increases by 10% and then returns to its initial value, while ¢; remains

essentially unchanged. The deviation from orthotropy as defined by (79) and the corresponding orientation

of the ‘closest’ orthotropy axes and the principal plastic stretch are shown in Fig. 5. As could be expected
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Fig. 3. Yield and energy surface and direction of inelastic strain rate in stress space after (a) 1%, (c) 10% and (f) 30% uniaxial
compression.

for this proportional loading, the deviation from orthotropy is vanishingly small (Fig. 5(a)) and the cor-
responding orientation differs from zero — the plastic stretch direction — by only a few degrees (Fig. 5(b)). 2

4.2. Hydrostatic compression

For a prescribed hydrostatic compression with Vu;; = Vus, and Vuy, = P,y = 0, the simulated stress
response shown in Fig. 6 exhibits a significant drop in the compressive normal stresses after initial yield

12 The first data point in the ¢, -plot is actually meaningless because at this stage Cis nearly isotropic and any small deviation from
isotropy leads to finite values for ¢,.
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Fig. 5. Non-orthotropy measure ¢, (a) and orientations ¢, and ¢, of closest orthotropy direction and principal plastic stretch (b) for
the uniaxial compression test.

with a subsequent plateau regime. As in the case of uniaxial compression, the compressive Cauchy stresses
would actually increase in the final stage because J decreases exponentially with In U. The sharp pressure
drop, however, would remain and is in contrast to experimental observations. This effect is likely to be
related to the fact that a two dimensional model is used here; first results using a three dimensional beam
network do not exhibit this pressure drop but instead show a significant hardening.

Yield and energy surfaces after 25% hydrostatic compression are shown in Fig. 7. Isotropy in both is
maintained and the yield surface assumes an egg-like shape, again with a bulge at the loading point. As
before, the inelastic strain rate is found to be normal to the yield surface at all points.

4.3. Non-proportional loading

Both cases considered so far represent proportional loadings: The principal stretch directions remain
fixed during deformation. Therefore the retained isotropy for hydrostatic compression and the developing
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Fig. 6. Stress response to hydrostatic compression.
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Fig. 7. Yield and energy surface and direction of inelastic strain rate in stress space after 25% hydrostatic compression.

orthotropy for uniaxial compression are not surprising. To examine the effect of non-proportional loading,
a deformation history has been prescribed where the principal plastic stretches change monotonically to
~1.1 and 0.8 respectively, while the principal stretch direction rotates from zero to —35° relative to the x,-
axis. The corresponding snapshots of the deformed RVE are shown in Fig. 9. In stage (c), a band of
collapsed cells has formed like in the uniaxial case. A closer inspection shows that the orientation of this
band coincides with the principal stretch direction present at this stage — as could be expected. The stress
response is depicted in Fig. 8; it is rather difficult to interpret since all stress components are non-zero. But it
should be kept in mind that this somewhat unrealistic straining path is only meant to produce significant
changes of principal stretch direction. Yield and energy surface corresponding to stage (e) in Fig. 9 are
shown in Fig. 10. Like in the previous cases, the sections of yield and energy surfaces with the coordinate
planes exhibit similar shapes — save for the bulge at the loading point in the yield surface. The deviation of
the stiffness from orthotropy is visualised in Fig. 11(a) through the non-orthotropy measure ¢,,. Note that
the relative distance from the closest orthotropic stiffness is just 2% in the final stage. In view of the finite
stretches whose directions have swept over the material by a finite angle, this is a remarkable result. The
orientation of this direction of orthotropy is found to approximately coincide, at all stages, with the
changing direction of the principal plastic stretch — at least no other conclusion can be drawn from
Fig. 11(b).
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Finally, the evolution of the principal stiffnesses is plotted in Fig. 12. It differs qualitatively from that for

uniaxial compression (Fig. 4) — even though the final values of the stretch are similar: The principal stiffness
labelled c3, which corresponds to the initial compression modulus, first diminishes and then increases again
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Fig. 12. Normalised principal stiffnesses versus load parameter for a strongly non-proportional loading.

to reach its initial value. This is in contrast to the proportional case where the corresponding stiffness
saturates at a significantly smaller value.
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5. Discussion

The computed yield surfaces presented in the previous section for the model material considered here

suggest a phenomenological representation as a quadratic function in the stresses, i.e. of the form

Q) = %r(lA}r (81)
This has been concluded in similar studies focussing on the initial yield surface of an irregular honeycomb
(Chen et al., 1999) and is found here to be a suitable approximation also for finite subsequent deformations.
As a refinement, this quadratic function could be augmented to reflect the presence of a bulge at the final
stress point of the path that has lead to the respective configuration. The numerical method presented above
could be used to produce ‘experimental’ data in order to find suitable expressions for this refinement. For
example, the variation of the direction and magnitude of the inelastic strain rate with the direction of the
stress rate can be computed directly.

An important observation is that the elastic and plastic properties of the considered model material are
closely related in that the elastic compliance €' and the 4th order tensor G in a quadratic fit of the yield
function have practically identical symmetry properties. Further, the above results suggest that both have
orthotropic symmetry and that the axes of orthotropy coincide with the principal directions of the plastic
stretch U,,. It must be noted that this statement refers to the situation where the plastic stretch is measured
from an initially isotropic reference configuration as was — at least approximately — the case here. In
general, the choice of reference configuration is, of course, arbitrary and the above statement would not
make sense without this restriction. It must also be noted that isotropy of the yield and energy function in
the virgin state as exhibited in Fig. 3(a) does not imply ‘full’ isotropy of the material behaviour with respect
to the virgin state as the reference configuration. For example, if the microstructure consists of perfect
honeycombs then yield and energy surfaces are still isotropic, but the hardening is certainly not: Finite
compression in 1- and 2-direction will lead to a different response because the hexagon has no cubic
symmetry (cf. Hohe and Becker, 2003). Random variations of the hexagon-vertex positions have been
imposed here also to remove this particular type of anisotropy but it might still be present. In this context, it
is not clear if the qualitative difference in the stiffness evolution for the non-proportional and the uniaxial
case are a result of this ‘initial’ anisotropy or of the non-proportionality. Further studies are needed to
resolve this question.

A final comment relates to the two dimensional nature of the study. It has already been mentioned that
the hydrostatic compression test with a three dimensional beam structure leads to significantly different
results in that the pressure exhibits pronounced hardening after the elastic limit. Regarding the conclusions
drawn in the preceding paragraph about type and orientation of the evolving anisotropy, the influence of
using a two dimensional microstructure is not clear and likewise requires investigation.

Appendix A. The thermodynamic conjugate to lA)p
With the notations
(UPU;)sk = W (A.1)
the left hand side of (32) reads
B E(UU,1) = gy (T Dy + Z- Wy ). (A.2)

Since Wop can be calculated from the knowledge of ﬁp and U, via (Mehrabadi and Nemat-Nasser, 1987)



6780 L. Schmidt | International Journal of Solids and Structures 41 (2004) 67596782

Wop = (I, I, = Jp) "' I3, (UpDy = DyUy) — I, (U2D, = DyU2) + (U2D, U, - U, D, U2 ) |

(A.3)
the second term in (A.2) can be expressed as
Su-Wo =D, {([UPHUP —J,)"! [lf,p(UpEsk — 3. U,) — Iy, (Uifsk _ 3, Uﬁ)
+ (022, - U502 |} (A4)
from which (32) follows with the stress measure A given explicitly by
~ - » ~ -~ -~ ~
A== {Zy+ v dtu, =) [B (U B - E4Uy) = I, (U2E - 54 02)
+ (02240, - U,3.02) |} (A.5)

This expression yields the representation (34) for the Cartesian components on the principal axis of U,,.
Eqgs. (A.3) and (A.5) can also be expressed as

KAV"" N XAB"’ . (A.6)
A =—-J,(Zy+X2Zy),
involving the 4th order tensor X, whose Cartesian components are given by
Xy = (Ip, Iy, —Jp) ™" [[?Jp (Uﬁﬁﬂ - 5ika/) — Iy, (ULUndu — 05 UL UY) + (Umek Uj — lJiIl]((]j[';lUfl)}'
(A7)
From (A.7) it is seen that X has the symmetries
Xijkl = X/clij = _inlk (A,8)

and therefore yields a skew symmetric 2nd order tensor when operating on a symmetric 2nd order tensor
and vice versa.

Appendix B. Derivation of (39)

Eq. (39) is the result of multiplying both sides of (10) by U Tand U > ! from the left and right respectively
and using the chain rule. The quantities appearing in (39) are given by

~ ~ )~ o~ o~ -1
R = [€(RT+K'X)|

1

where K, = E@;(f + ET),

in Cartesian components ]IA(i,:,-kl = (6;5‘,-, + 0y 6;, + E'l.",é_,-k + 9y E'j‘k)

1
4
1~ /~ ~ ~ ~
+ E (Ekl[l»q (Sjpéiq + 5jpSiq + qu(sip * 5quip)v

and of; = 0% ~ .. (B.1)

E.M;
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Appendix C. Non-orthotropy measure

Employing the matrix notation

Siy @:11 (?12 (:Ela E\
S = (Flz (Fzz (an Ex (C.1)
\/5512 (]:13 (]:23 (]:33 \/EEIZ

for the two dimensional version of Hooke’s law (58), i.c.

(tll = (tlllh CZZ = 6322227 6333 = 26:12127
(EIZ = d:11227 djl3 = \/56311127 (]A:23 = \/56322127

one can show that €, is expressible as

o = min (@00 + (@(0)) /€, (€3)
Here, (E;j(go) are the corresponding matrix components of the tensor

T'(¢p) = Q) * € (C4)

with Q an orthogonal tensor representing a rotation about the x;-axis. The minimiser ¢, of (C.3) is the
direction of the closest orthotropy axes.
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